Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.582
Filtrar
1.
J Neurosci Res ; 102(4): e25333, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38656542

RESUMO

Novelty influences hippocampal-dependent memory through metaplasticity. Mismatch novelty detection activates the human hippocampal CA1 area and enhances rat hippocampal-dependent learning and exploration. Remarkably, mismatch novelty training (NT) also enhances rodent hippocampal synaptic plasticity while inhibition of VIP interneurons promotes rodent exploration. Since VIP, acting on VPAC1 receptors (Rs), restrains hippocampal LTP and depotentiation by modulating disinhibition, we now investigated the impact of NT on VPAC1 modulation of hippocampal synaptic plasticity in male Wistar rats. NT enhanced both CA1 hippocampal LTP and depotentiation unlike exploring an empty holeboard (HT) or a fixed configuration of objects (FT). Blocking VIP VPAC1Rs with PG 97269 (100 nM) enhanced both LTP and depotentiation in naïve animals, but this effect was less effective in NT rats. Altered endogenous VIP modulation of LTP was absent in animals exposed to the empty environment (HT). HT and FT animals showed mildly enhanced synaptic VPAC1R levels, but neither VIP nor VPAC1R levels were altered in NT animals. Conversely, NT enhanced the GluA1/GluA2 AMPAR ratio and gephyrin synaptic content but not PSD-95 excitatory synaptic marker. In conclusion, NT influences hippocampal synaptic plasticity by reshaping brain circuits modulating disinhibition and its control by VIP-expressing hippocampal interneurons while upregulation of VIP VPAC1Rs is associated with the maintenance of VIP control of LTP in FT and HT animals. This suggests VIP receptor ligands may be relevant to co-adjuvate cognitive recovery therapies in aging or epilepsy, where LTP/LTD imbalance occurs.


Assuntos
Comportamento Exploratório , Hipocampo , Plasticidade Neuronal , Ratos Wistar , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo , Peptídeo Intestinal Vasoativo , Animais , Masculino , Plasticidade Neuronal/fisiologia , Ratos , Hipocampo/metabolismo , Hipocampo/fisiologia , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo/metabolismo , Comportamento Exploratório/fisiologia , Peptídeo Intestinal Vasoativo/metabolismo , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/fisiologia , Potenciação de Longa Duração/fisiologia
2.
J Neurosci ; 44(17)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38514181

RESUMO

The initiation of abstinence after chronic drug self-administration is stressful. Cocaine-seeking behavior on the first day of the absence of the expected drug (Extinction Day 1, ED1) is reduced by blocking 5-HT signaling in dorsal hippocampal cornu ammonis 1 (CA1) in both male and female rats. We hypothesized that the experience of ED1 can substantially influence later relapse behavior and that dorsal raphe (DR) serotonin (5-HT) input to CA1 may be involved. We inhibited 5-HT1A/1B receptors (WAY-100635 plus GR-127935), or DR input (chemogenetics), in CA1 on ED1 to test the role of this pathway on cocaine-seeking persistence 2 weeks later. We also inhibited 5-HT1A or 5-HT1B receptors in CA1 during conditioned place preference (CPP) for cocaine, to examine mechanisms involved in the persistent effects of ED1 manipulations. Inhibition of DR inputs, or 5-HT1A/1B signaling, in CA1 decreased drug seeking on ED1 and decreased cocaine seeking 2 weeks later revealing that 5-HT signaling in CA1 during ED1 contributes to persistent drug seeking during abstinence. In addition, 5-HT1B antagonism alone transiently decreased drug-associated memory performance when given prior to a CPP test, whereas similar antagonism of 5-HT1A alone had no such effect but blocked CPP retrieval on a test 24 h later. These CPP findings are consistent with prior work showing that DR inputs to CA1 augment recall of the drug-associated context and drug seeking via 5-HT1B receptors and prevent consolidation of the updated nondrug context via 5-HT1A receptors. Thus, treatments that modulate 5-HT-dependent memory mechanisms in CA1 during initial abstinence may facilitate later maintenance of abstinence.


Assuntos
Cocaína , Comportamento de Procura de Droga , Oxidiazóis , Serotonina , Animais , Masculino , Comportamento de Procura de Droga/fisiologia , Comportamento de Procura de Droga/efeitos dos fármacos , Ratos , Serotonina/metabolismo , Feminino , Cocaína/administração & dosagem , Cocaína/farmacologia , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Piridinas/farmacologia , Antagonistas da Serotonina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Piperazinas/farmacologia , Ratos Sprague-Dawley , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Transtornos Relacionados ao Uso de Cocaína/psicologia , Autoadministração , Extinção Psicológica/efeitos dos fármacos , Extinção Psicológica/fisiologia , Receptor 5-HT1B de Serotonina/metabolismo , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/metabolismo
3.
Brain Res Bull ; 208: 110890, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38302069

RESUMO

Cognitive impairment is a major complication of cerebral ischemia-reperfusion (CIR) injury and has an important impact on the quality of life of patients. However, the precise mechanisms underlying cognitive impairment after CIR injury remain elusive. In the current study, we investigated the role of interleukin 17 A (IL-17A) on CIR injury-induced cognitive impairment in wild-type and IL-17A knockout mice using RNA sequencing analysis, neurological assessments, Golgi-Cox staining, dendritic spine analysis, immunofluorescence assay, and western blot analysis. RNA sequencing identified 195 CIR-induced differentially expressed genes (83 upregulated and 112 downregulated), highlighting several enriched biological processes (negative regulation of phosphorylation, transcription regulator complex, and receptor ligand activity) and signaling pathways (mitogen-activated protein kinase [MAPK], tumor necrosis factor, and IL-17 signaling pathways). We also injected adeno-associated virus into the bilateral hippocampal CA1 regions of CIR mice to upregulate or downregulate cyclic AMP response element-binding protein. IL-17A knockout activated the extracellular signal-regulated kinase (ERK)/MAPK signaling pathway and further improved synaptic plasticity, structure, and function in CIR mice. Together, our findings suggest that IL-17A deficiency alleviates CIR injury by activating the ERK/MAPK signaling pathway and enhancing hippocampal synaptic plasticity.


Assuntos
Isquemia Encefálica , Traumatismo por Reperfusão , Humanos , Animais , Camundongos , Região CA1 Hipocampal/metabolismo , Interleucina-17/metabolismo , Qualidade de Vida , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Traumatismo por Reperfusão/metabolismo
4.
Synapse ; 78(1): e22285, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38287475

RESUMO

Agents that positively modulate the activity of α7nAChRs are used as cognitive enhancers and for the treatment of hippocampus-dependent functional decline. However, it is not known whether the expression and the effects of α7nAChRs apply to the entire longitudinal axis of the hippocampus equally. Given that cholinergic system-involving hippocampal functions are not equally distributed along the hippocampus, we comparatively examined the expression and the effects of α7nAChRs on excitatory synaptic transmission between the dorsal and the ventral hippocampal slices from adult rats. We found that α7nAChRs are equally expressed in the CA1 field of the two segments of the hippocampus. However, activation of α7nAChRs by their highly selective agonist PNU 282987 induced a gradually developing increase in field excitatory postsynaptic potential only in the dorsal hippocampus. This long-term potentiation was not reversed upon application of nonselective nicotinic receptor antagonist mecamylamine, but the induction of potentiation was prevented by prior blockade of α7nAChRs by their antagonist MG 624. In contrast to the long-term synaptic plasticity, we found that α7nAChRs did not modulate short-term synaptic plasticity in either the dorsal or the ventral hippocampus. These results may have implications for the role that α7nAChRs play in specifically modulating functions that depend on the normal function of the dorsal hippocampus. We propose that hippocampal functions that rely on a direct α7 nAChR-mediated persistent enhancement of glutamatergic synaptic transmission are preferably supported by dorsal but not ventral hippocampal synapses.


Assuntos
Receptores Nicotínicos , Receptor Nicotínico de Acetilcolina alfa7 , Ratos , Animais , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Hipocampo/metabolismo , Região CA1 Hipocampal/metabolismo , Receptores Nicotínicos/metabolismo , Transmissão Sináptica/fisiologia
5.
Mol Brain ; 16(1): 73, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848907

RESUMO

Calcium ions (Ca2+) play pivotal roles in regulating diverse brain functions, including cognition, emotion, locomotion, and learning and memory. These functions are intricately regulated by a variety of Ca2+-dependent cellular processes, encompassing synaptic plasticity, neuro/gliotransmitter release, and gene expression. In our previous work, we developed 'monster OptoSTIM1' (monSTIM1), an improved OptoSTIM1 that selectively activates Ca2+-release-activated Ca2+ (CRAC) channels in the plasma membrane through blue light, allowing precise control over intracellular Ca2+ signaling and specific brain functions. However, the large size of the coding sequence of monSTIM1 poses a limitation for its widespread use, as it exceeds the packaging capacity of adeno-associated virus (AAV). To address this constraint, we have introduced monSTIM1 variants with reduced coding sequence sizes and established AAV-based systems for expressing them in neurons and glial cells in the mouse brain. Upon expression by AAVs, these monSTIM1 variants significantly increased the expression levels of cFos in neurons and astrocytes in the hippocampal CA1 region following non-invasive light illumination. The use of monSTIM1 variants offers a promising avenue for investigating the spatiotemporal roles of Ca2+-mediated cellular activities in various brain functions. Furthermore, this toolkit holds potential as a therapeutic strategy for addressing brain disorders associated with aberrant Ca2+ signaling.


Assuntos
Canais de Cálcio , Dependovirus , Camundongos , Animais , Dependovirus/metabolismo , Optogenética , Região CA1 Hipocampal/metabolismo , Aprendizagem , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia
6.
Aging (Albany NY) ; 15(20): 11227-11243, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37857016

RESUMO

Effective preventive measures against postoperative cognitive dysfunction in older adults are urgently needed. In this study, we investigated the effect of electroacupuncture (EA) on anesthesia and surgery-induced cognitive decline in aged rats by RNA-seq analysis, behavioral testing, Golgi-Cox staining, dendritic spine analysis, immunofluorescence assay and western blot analysis. EA ameliorated anesthesia and surgery induced-cognitive decline. RNA-seq analysis identified numerous differentially-expressed genes, including 353 upregulated genes and 563 downregulated genes, after pretreatment with EA in aged rats with postoperative cognitive dysfunction. To examine the role of CREB in EA, we injected adeno-associated virus (AAV) into the CA1 region of the hippocampus bilaterally into the aged rats to downregulate the transcription factor. EA improved synaptic plasticity, structurally and functionally, by activating the MAPK/ERK/CREB signaling pathway in aged rats. Together, our findings suggest that EA protects against anesthesia and surgery-induced cognitive decline in aged rats by activating the MAPK/ERK/CREB signaling pathway and enhancing hippocampal synaptic plasticity.


Assuntos
Disfunção Cognitiva , Eletroacupuntura , Complicações Cognitivas Pós-Operatórias , Ratos , Animais , Região CA1 Hipocampal/metabolismo , Ratos Sprague-Dawley , Complicações Cognitivas Pós-Operatórias/metabolismo , Hipocampo/metabolismo , Disfunção Cognitiva/prevenção & controle , Disfunção Cognitiva/metabolismo
7.
Nat Commun ; 14(1): 6100, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37773230

RESUMO

Memory consolidation involves discrete patterns of transcriptional events in the hippocampus. Despite the emergence of single-cell transcriptomic profiling techniques, mapping the transcriptomic signature across subregions of the hippocampus has remained challenging. Here, we utilized unbiased spatial sequencing to delineate transcriptome-wide gene expression changes across subregions of the dorsal hippocampus of male mice following learning. We find that each subregion of the hippocampus exhibits distinct yet overlapping transcriptomic signatures. The CA1 region exhibited increased expression of genes related to transcriptional regulation, while the DG showed upregulation of genes associated with protein folding. Importantly, our approach enabled us to define the transcriptomic signature of learning within two less-defined hippocampal subregions, CA1 stratum radiatum, and oriens. We demonstrated that CA1 subregion-specific expression of a transcription factor subfamily has a critical functional role in the consolidation of long-term memory. This work demonstrates the power of spatial molecular approaches to reveal simultaneous transcriptional events across the hippocampus during memory consolidation.


Assuntos
Consolidação da Memória , Transcriptoma , Masculino , Camundongos , Animais , Transcriptoma/genética , Hipocampo/fisiologia , Região CA1 Hipocampal/metabolismo , Aprendizagem
8.
Int J Mol Sci ; 24(18)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37762124

RESUMO

Chronic pain is a significant health problem worldwide. Recent evidence has suggested that the ventral hippocampus is dysfunctional in humans and rodents, with decreased neuronal excitability and connectivity with other brain regions, parallel pain chronicity, and persistent nociceptive hypersensitivity. But the molecular mechanisms underlying hippocampal modulation of pain remain poorly elucidated. In this study, we used ex vivo whole-cell patch-clamp recording, immunofluorescence staining, and behavioral tests to examine whether hyperpolarization-activated cyclic nucleotide-gated channels 2 (HCN2) in the ventral hippocampal CA1 (vCA1) were involved in regulating nociceptive perception and CFA-induced inflammatory pain in mice. Reduced sag potential and firing rate of action potentials were observed in vCA1 pyramidal neurons from CFA-injected mice. Moreover, the expression of HCN2, but not HCN1, in vCA1 decreased in mice injected with CFA. HCN2 knockdown in vCA1 pyramidal neurons induced thermal hypersensitivity, whereas overexpression of HCN2 alleviated thermal hyperalgesia induced by intraplantar injection of CFA in mice. Our findings suggest that HCN2 in the vCA1 plays an active role in pain modulation and could be a promising target for the treatment of chronic pain.


Assuntos
Dor Crônica , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Canais de Potássio , Animais , Camundongos , Potenciais de Ação , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Nociceptividade , Canais de Potássio/genética , Canais de Potássio/metabolismo , Região CA1 Hipocampal/metabolismo
9.
Commun Biol ; 6(1): 685, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37400621

RESUMO

Cancer patients often experience impairments in cognitive function. However, the evidence for tumor-mediated neurological impairment and detailed mechanisms are still lacking. Gut microbiota has been demonstrated to be involved in the immune system homeostasis and brain functions. Here we find that hepatocellular carcinoma (HCC) growth alters the gut microbiota and impedes the cognitive functions. The synaptic tagging and capture (STC), an associative cellular mechanism for the formation of associative memory, is impaired in the tumor-bearing mice. STC expression is rescued after microbiota sterilization. Transplantation of microbiota from HCC tumor-bearing mice induces similar STC impairment in wide type mice. Mechanistic study reveals that HCC growth significantly elevates the serum and hippocampus IL-1ß levels. IL-1ß depletion in the HCC tumor-bearing mice restores the STC. Taken together, these results demonstrate that gut microbiota plays a crucial role in mediating the tumor-induced impairment of the cognitive function via upregulating IL-1ß production.


Assuntos
Carcinoma Hepatocelular , Cognição , Microbioma Gastrointestinal , Neoplasias Hepáticas , Animais , Camundongos , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Região CA1 Hipocampal/metabolismo
10.
J Chem Neuroanat ; 131: 102289, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37196826

RESUMO

BACKGROUND AND OBJECTIVE: Epilepsy is a common chronic brain disease. Despite the availability of various anti-seizure drugs, approximately 30 % of patients do not respond to treatment. Recent research suggests that Kalirin plays a role in regulating neurological function. However, the pathogenesis of Kalirin in epileptic seizures remains unclear. This study aims to investigate the role and mechanism of Kalirin in epileptogenesis. MATERIALS AND METHODS: An epileptic model was induced by intraperitoneal injection of pentylenetetrazole (PTZ). Endogenous Kalirin was inhibited using shRNA. The expression of Kalirin, Rac1, and Cdc42 in the hippocampal CA1 region was measured using Western blotting. Spine and synaptic structures were examined using Golgi staining and electron microscopy. Moreover, the necrotic neurons in CA1 were examined using HE staining. RESULTS: The results indicated that the epileptic score increased in epileptic animals, while inhibition of Kalirin decreased the epileptic scores and increased the latent period of the first seizure attack. Inhibition of Kalirin attenuated the increases in Rac1 expression, dendritic spine density, and synaptic vesicle number in the CA1 region induced by PTZ. However, the increase in Cdc42 expression was not affected by the inhibition of Kalirin. CONCLUSION: This study suggests that Kalirin is involved in the development of seizures by modulating the activity of Rac1, providing a novel anti-epileptic target.


Assuntos
Epilepsia , Fatores de Troca do Nucleotídeo Guanina , Proteínas Serina-Treonina Quinases , Transdução de Sinais , Proteínas rac1 de Ligação ao GTP , Animais , Região CA1 Hipocampal/metabolismo , Epilepsia/metabolismo , Neurônios/metabolismo , Pentilenotetrazol/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Transdução de Sinais/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo
11.
Sci Rep ; 13(1): 5079, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36977728

RESUMO

It is known that GABAergic transmission onto pyramidal neurons shows different forms of plasticity. However, GABAergic cells innervate also other inhibitory interneurons and plasticity phenomena at these projections remain largely unknown. Several mechanisms underlying plastic changes, both at inhibitory and excitatory synapses, show dependence on integrins, key proteins mediating interaction between intra- and extracellular environment. We thus used hippocampal slices to address the impact of integrins on long-term plasticity of GABAergic synapses on specific inhibitory interneurons (containing parvalbumin, PV + or somatostatin, SST +) known to innervate distinct parts of principal cells. Administration of RGD sequence-containing peptide induced inhibitory long-term potentiation (iLTP) at fast-spiking (FS) PV + as well as on SST + interneurons. Interestingly, treatment with a more specific peptide GA(C)RRETAWA(C)GA (RRETAWA), affecting α5ß1 integrins, resulted in iLTP in SST + and iLTD in FS PV + interneurons. Brief exposure to NMDA is known to induce iLTP at GABAergic synapses on pyramidal cells. Intriguingly, application of this protocol for considered interneurons evoked iLTP in SST + and iLTD in PV + interneurons. Moreover, we showed that in SST + cells, NMDA-evoked iLTP depends on the incorporation of GABAA receptors containing α5 subunit to the synapses, and this iLTP is occluded by RRETAWA peptide, indicating a key role of α5ß1 integrins. Altogether, our results revealed that plasticity of inhibitory synapses at GABAergic cells shows interneuron-specificity and show differences in the underlying integrin-dependent mechanisms. This is the first evidence that neuronal disinhibition may be a highly plastic process depending on interneuron type and integrins' activity.


Assuntos
Integrinas , N-Metilaspartato , Integrinas/metabolismo , N-Metilaspartato/metabolismo , Hipocampo/metabolismo , Sinapses/metabolismo , Interneurônios/metabolismo , Células Piramidais/metabolismo , Receptores de GABA-A/metabolismo , Somatostatina/metabolismo , Parvalbuminas/metabolismo , Plasticidade Neuronal/fisiologia , Região CA1 Hipocampal/metabolismo
12.
Cereb Cortex ; 33(6): 2612-2625, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35797708

RESUMO

Growth hormone secretagogue receptor 1a (GHSR1a)-the receptor for orexigenic hormone ghrelin-is a G protein-coupled receptor that is widely distributed in the brain, including the hippocampus. Studies have demonstrated that genetic deletion of GHSR1a affects memory, suggesting the importance of ghrelin/GHSR1a signaling in cognitive control. However, current reports are controversial, and the mechanism underlying GHSR1a modulation of memory is uncertain. Here, we first report that global GHSR1a knockout enhances hippocampus-dependent memory, facilitates initial LTP in dorsal hippocampal Schaffer Collateral-CA1 synapses, and downregulates Akt activity in the hippocampus. Moreover, we show that the intrinsic excitability of GAD67+ interneurons-rather than neighboring pyramidal neurons in the dCA1-is suppressed by GHSR1a deletion, an effect that is antagonized by acute application of the Akt activator SC79. In addition, the inhibitory postsynaptic currents (IPSCs) on dCA1 pyramidal neurons are selectively reduced in mice with a GHSR1a deficiency. Finally, we demonstrate that selectively increasing the excitability of parvalbumin-expressing interneurons by hM3Dq-DREADDs increases IPSCs on dCA1 pyramidal neurons and normalizes memory in Ghsr1a KO mice. Our findings thus reveal a novel mechanism underlying memory enhancement of GHSR1a deficiency and herein support an adverse effect of GHSR1a signaling in hippocampus-dependent memory processes.


Assuntos
Região CA1 Hipocampal , Grelina , Memória , Células Piramidais , Receptores de Grelina , Colaterais de Schaffer , Animais , Camundongos , Grelina/genética , Grelina/metabolismo , Hipocampo/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células Piramidais/metabolismo , Células Piramidais/fisiologia , Receptores de Grelina/deficiência , Receptores de Grelina/genética , Receptores de Grelina/metabolismo , Memória/fisiologia , Região CA1 Hipocampal/metabolismo , Colaterais de Schaffer/metabolismo
13.
J Stroke Cerebrovasc Dis ; 32(1): 106896, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36395661

RESUMO

AIM: To investigate the influence of dexmedetomidine (Dex) on cerebral ischemia/reperfusion (I/R)-injured rat neuronal cells by regulating the Sphk1/S1P pathway. METHODS: The rats were divided into the following groups, with 18 rats in each group categorized on the basis of random number tables: sham (Sham), I/R (I/R), Dex, Sphk1 inhibitor (PF-543), and Dex together with the Sphk1 agonist phorbol-12-myristate-13-acetate (Dex+PMA). The neurological functions of the rats were assessed by the Longa scoring system at 24 h post reperfusion. The area of brain infarction was inspected using 2,3,5-triphenyltetrazolium chloride staining, and the water content of brain tissue was determined by the dry-wet weight method. The morphology of neurons in the CA1 region of the rat hippocampus was inspected using Nissl staining, while the apoptosis of neurons in this region was detected by terminal-deoxynucleotidyl transferase mediated nick end labeling staining. The Sphk1 and S1P protein levels were determined by immunofluorescence and western blotting, respectively. RESULTS: Compared to the I/R group, rats in the Dex, PF-543, and Dex+PMA groups had a significantly lower neurological function score, as well as lower brain water content and a decreased infarction area. Moreover, the apoptotic index of the neurons and the Sphk1 and S1P levels in the hippocampal CA1 region were significantly lower in these groups (p<0.05). PMA, an agonist of Sphk1, was able to reverse the protective effects of Dex on I/R-induced neuronal cell injury. CONCLUSION: Dex could protect cerebral I/R-induced neuronal cell injury by suppressing the Sphk1/S1P signaling pathway.


Assuntos
Isquemia Encefálica , Dexmedetomidina , Traumatismo por Reperfusão , Animais , Ratos , Apoptose , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Região CA1 Hipocampal/metabolismo , Infarto Cerebral , Dexmedetomidina/farmacologia , Neurônios/metabolismo , Ratos Sprague-Dawley , Reperfusão , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/metabolismo , Transdução de Sinais
14.
Cells ; 11(24)2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36552783

RESUMO

Cholinergic neuronal networks in the hippocampus play a key role in the regulation of learning and memory in mammals. Perturbations of these networks, in turn, underlie neurodegenerative diseases. However, the mechanisms remain largely undefined. We have recently demonstrated that an in vitro MEN1 gene deletion perturbs nicotinic cholinergic plasticity at the hippocampal glutamatergic synapses. Furthermore, MEN1 neuronal conditional knockout in freely behaving animals has also been shown to result in learning and memory deficits, though the evidence remains equivocal. In this study, using an AVV viral vector transcription approach, we provide direct evidence that MEN1 gene deletion in the CA1 region of the hippocampus indeed leads to contextual fear conditioning deficits in conditional knockout animals. This loss of function was, however, recovered when the same animals were re-injected to overexpress MEN1. This study provides the first direct evidence for the sufficiency and necessity of MEN1 in fear conditioning, and further endorses the role of menin in the regulation of cholinergic synaptic machinery in the hippocampus. These data underscore the importance of further exploring and revisiting the cholinergic hypothesis that underlies neurodegenerative diseases that affect learning and memory.


Assuntos
Região CA1 Hipocampal , Memória , Proteínas Proto-Oncogênicas , Animais , Camundongos , Região CA1 Hipocampal/metabolismo , Mutação com Ganho de Função , Hipocampo/metabolismo , Mamíferos/metabolismo , Camundongos Knockout , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Sinapses/metabolismo , Memória/fisiologia
15.
eNeuro ; 9(6)2022.
Artigo em Inglês | MEDLINE | ID: mdl-36418174

RESUMO

Glucocorticoid signaling influences hippocampal-dependent behavior and vulnerability to stress-related neuropsychiatric disorders. In mice, lifelong overexpression of glucocorticoid receptor (GR) in forebrain excitatory neurons altered exploratory behavior, cognition, and dorsal hippocampal gene expression in adulthood, but whether GR overexpression alters the information encoded by hippocampal neurons is not known. We performed in vivo microendoscopic calcium imaging of 1359 dorsal CA1 pyramidal cells in freely behaving male and female wild-type (WT) and GR-overexpressing (GRov) mice during exploration of a novel open field, where most CA1 neurons are expected to respond to center location and mobility. Most neurons showed sensitivity to center location and/or mobility based on single-neuron calcium amplitude and event rate, but these sensitivity patterns differed between genotypes. GRov neurons were more likely than WT neurons to display center sensitivity and less likely to display mobility sensitivity. More than one-third of these responsive GRov neurons were sensitive only to center location and not mobility, while uniquely center-sensitive neurons were rare in WT. Most center-sensitive neurons exhibited anticipatory activity, suggesting they could drive behavior. We conclude that, compared with wild-type, dorsal CA1 pyramidal cells in GRov mice preferentially respond to center location rather than mobility in a novel open field. Such changes in the information encoded by individual hippocampal neurons in an aversive environment could underlie changes in stress vulnerability because of genetic or epigenetic variations in glucocorticoid receptor signaling.


Assuntos
Cálcio , Receptores de Glucocorticoides , Feminino , Camundongos , Masculino , Animais , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Cálcio/metabolismo , Hipocampo/metabolismo , Células Piramidais/fisiologia , Prosencéfalo/metabolismo , Glucocorticoides/metabolismo , Região CA1 Hipocampal/metabolismo
16.
Neurosci Lett ; 790: 136898, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36195298

RESUMO

Noopept (NP) is a proline-containing dipeptide with nootropic and neuroprotective properties. We have previously shown that NP significantly increased the frequency of spontaneous IPSCs in hippocampal CA1 pyramidal cells mediated by the activation of inhibitory interneurons in stratum radiatum. The cholinergic system plays an important role in the performance of cognitive functions, furthermore multiple behavioral and clinical facts link NP with the cholinergic system. The present study was undertaken to reveal the possible interaction of NP with neuronal nicotinic acetylcholine receptors (nAChRs). Currents were recorded from rat hippocampal neurons using the whole-cell, patch-clamp technique. NP (5 µM) increased the action potential firing frequency recorded from GABAergic interneurons in the stratum radiatum (SR) of CA1 region. This effect was almost completely abolished by the application of the α7 nAChR-selective antagonists α-bungarotoxin (α-BGT; 6 nM) and methyllycaconitine (MLA; 20 nM). The increase in the frequency of spontaneous IPSCs in CA1 pyramidal cells induced by NP was also eliminated by α7 nAChRs antagonists. These results imply the involvement of α7 nAChRs in the modulation of hippocampal neuronal activity caused by NP and indicate that a7 nAChRs are an important site of action of NP.


Assuntos
Nootrópicos , Receptores Nicotínicos , Animais , Ratos , Bungarotoxinas , Dipeptídeos/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Interneurônios/metabolismo , Antagonistas Nicotínicos/farmacologia , Nootrópicos/farmacologia , Prolina/farmacologia , Células Piramidais/efeitos dos fármacos , Células Piramidais/fisiologia , Ratos Sprague-Dawley , Receptores Nicotínicos/metabolismo , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/efeitos dos fármacos , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
17.
Ecotoxicol Environ Saf ; 247: 114230, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36306617

RESUMO

Melamine (MEL) and cyanuric acid (CA) alone have relatively low toxicity, but together they may cause serious damage to multiple organs, including the central nervous system, however, the underlying mechanism is unknown. This study aimed to determine and compare the neurotoxic effects of MEL (20 µg/mL), CA (20 µg/mL) and their combination (10 µg/mL MEL and 10 µg/mL CA) on cultured hippocampal neurons. The cell viability, apoptosis, anti-oxidative and energy metabolic indices were detected following 24 h of incubations. The miniature excitatory postsynaptic currents (mEPSCs), miniature inhibitory postsynaptic currents (mIPSCs) and synaptic plasticity in the hippocampal CA1 neurons were recorded. Moreover, ROS scavenger NAC was co-infused to investigate the potential mechanism. We found the complex of MEL and CA but not their alone caused severe cell death and disturbed energy production through activation caspase-3-mediated apoptosis. Meanwhile, the combination significantly reduced the amplitude, decay time and frequency of mEPSCs but not mIPSCs, indicating the pre- and post-synaptic inhibitory actions on neuronal activity. Paired-pulsed ratio (PPR) and long-term potentiation (LTP) at the Schaffer collateral-CA1 synapses were critically depressed. However, the co-application of NAC could effectively mitigate the cellular apoptosis, energy metabolism dysfunction and the impairments in neuronal and synaptic function. Our findings provide the first evidence that the combination of MEL and CA can exert more prominently neurotoxic effects than their alone and certify that one of the potential mechanisms for neuronal and synaptic dysfunction is the ROS-mediated signaling pathway.


Assuntos
Região CA1 Hipocampal , Neurônios , Região CA1 Hipocampal/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Hipocampo , Estresse Oxidativo , Metabolismo Energético , Fatores de Risco
18.
Mol Psychiatry ; 27(10): 4035-4049, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35840797

RESUMO

While chronic stress increases hyperpolarization-activated current (Ih) in dorsal hippocampal CA1 neurons, the underlying molecular mechanisms are entirely unknown. Following chronic social defeat stress (CSDS), susceptible mice displayed social avoidance and impaired spatial working memory, which were linked to decreased neuronal excitability, increased perisomatic hyperpolarization-activated cyclic nucleotide-gated (HCN) 1 protein expression, and elevated Ih in dorsal but not ventral CA1 neurons. In control mice, bath application of corticosterone reduced neuronal excitability, increased tetratricopeptide repeat-containing Rab8b-interacting protein (TRIP8b) and HCN1 protein expression, and elevated Ih in dorsal but not ventral CA1 region/neurons. Corticosterone-induced upregulation of functional Ih was mediated by the glucocorticoid receptor (GR), HCN channels, and the protein kinase A (PKA) but not the calcium/calmodulin-dependent protein kinase II (CaMKII) pathway. Three months after the end of CSDS, susceptible mice displayed persistent social avoidance when exposed to a novel aggressor. The sustained behavioral deficit was associated with lower neuronal excitability and higher functional Ih in dorsal CA1 neurons, both of which were unaffected by corticosterone treatment. Our findings show that corticosterone treatment mimics the pathophysiological effects of dorsal CA1 neurons/region found in susceptible mice. The aberrant expression of HCN1 protein along the somatodendritic axis of the dorsal hippocampal CA1 region might be the molecular mechanism driving susceptibility to social avoidance.


Assuntos
Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Receptores de Glucocorticoides , Camundongos , Animais , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Receptores de Glucocorticoides/metabolismo , Glucocorticoides/metabolismo , Corticosterona/farmacologia , Corticosterona/metabolismo , Neurônios/metabolismo , Região CA1 Hipocampal/metabolismo , Hipocampo/metabolismo , Transtornos da Memória/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Canais de Potássio/metabolismo
19.
Proc Natl Acad Sci U S A ; 119(27): e2117076119, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35776545

RESUMO

Memories are thought to be encoded in populations of neurons called memory trace or engram cells. However, little is known about the dynamics of these cells because of the difficulty in real-time monitoring of them over long periods of time in vivo. To overcome this limitation, we present a genetically encoded RNA indicator (GERI) mouse for intravital chronic imaging of endogenous Arc messenger RNA (mRNA)-a popular marker for memory trace cells. We used our GERI to identify Arc-positive neurons in real time without the delay associated with reporter protein expression in conventional approaches. We found that the Arc-positive neuronal populations rapidly turned over within 2 d in the hippocampal CA1 region, whereas ∼4% of neurons in the retrosplenial cortex consistently expressed Arc following contextual fear conditioning and repeated memory retrievals. Dual imaging of GERI and a calcium indicator in CA1 of mice navigating a virtual reality environment revealed that only the population of neurons expressing Arc during both encoding and retrieval exhibited relatively high calcium activity in a context-specific manner. This in vivo RNA-imaging approach opens the possibility of unraveling the dynamics of the neuronal population underlying various learning and memory processes.


Assuntos
Região CA1 Hipocampal , Proteínas do Citoesqueleto , Memória , Proteínas do Tecido Nervoso , RNA Mensageiro , Animais , Região CA1 Hipocampal/metabolismo , Cálcio/metabolismo , Condicionamento Clássico , Proteínas do Citoesqueleto/biossíntese , Proteínas do Citoesqueleto/genética , Medo , Memória/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética
20.
Physiol Behav ; 254: 113887, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35724927

RESUMO

Cerebral ischemia could induce depressive-like behaviors; however, the alteration of gamma-aminobutyric acid receptors type B (GABAB) receptors in these pathological processes has not been extensively investigated. The aim of the current study was to document the behavioral change and the alteration of GABAB receptors in chronic cerebral hypoperfusion. The permanent occlusion of the bilateral common carotid arteries (two-vessel occlusion, 2VO) was performed to induce chronic cerebral ischemia (CCH). The depressive-like behaviors were evaluated with sucrose preference test, novelty suppress feeding test as well as forced swim test at 4, 8, and 12 weeks after the 2VO surgery. The total, surface and intracellular expressions of GABAB subunit 1 (GABAB1) and subunit 2 (GABAB2) in hippocampal CA1 were quantified by western blot. The depressive-like behaviors were observed in rats suffered from 4, 8, and 12 weeks 2VO in sucrose preference test, novelty suppress feeding test and forced swim test. In addition, the surface and total expression of GABAB1 in CA1 was reduced at 4 weeks after 2VO rather than 8 or 12 weeks. While the surface and total expression of GABAB2 in CA1 was decreased throughout the ischemia timeline (4, 8, and 12 weeks). Taken together, our findings suggested the potential roles of GABAB1 and GABAB2 subunits involved in depressive-like behaviors caused by chronic cerebral hypoperfusion.


Assuntos
Isquemia Encefálica , Região CA1 Hipocampal , Animais , Isquemia Encefálica/complicações , Isquemia Encefálica/patologia , Região CA1 Hipocampal/metabolismo , Hipocampo/metabolismo , Ratos , Ratos Sprague-Dawley , Sacarose/metabolismo , Ácido gama-Aminobutírico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...